Workshop 2 — Introduction to
Embedded Software

|[EEE Microchips and
Dip

Workshop 1
Recap

* We built a consisting of a microcontroller,
an analog temperature sensor, and an 12C
accelerometer

* We created an electrical schematic

* The system requirements follow:

* The system must get temperature once
a second

* The system must get acceleration every
100 ms

* The system must display these data for
the user to view

-
What are we doing
this workshop?

* Introduction to embedded software
development
* Programmingthe STM32 to
* Blink an LED
* Say "Hello World"
* Readthe temperature sensor

e Readthe accelerometer
s—Take-overthe-world

Developing on
an Embedded

Device vs a
Desktop

No built-in screen to debug programs

No file system

Limited memory

No floating point processor

Embedded

F401UartIT.elf - /F401UartIT/Debug - 2020/02/10 13:34:57
Memory Regions Memory Details

Development

MName Run addre;s (VMA) Load address (LMA) Size

~ I FLASH 0x08000000 512 KB
& .isr_vector 008000000 008000000 404 B
B .text (x0B000154 Ox0B000154 2,14 KB
& .rodata 008002624 0x08002624 24B
& .ARM O 0B00263c Ox0B00263c 8B
L .preinit_array 0x08002644 0x 08002644 0B
& .init_array Ox0B002644 Ox 08002644 4B
L& .fini_array 008002648 0x08002645 4B

Breakpoints i e —TT

B .data O 20000000 00800264 12B
B .bss O 2000000c 1008
& ._user_heap_stack 0% 20000070 1.5KB

Memory viewer

Serial to USB converters
LEDs

0x100: 37 88 LDA @0x88 { | \ \ ‘.
Addr:0x102 0x102: FF FF BKPT ‘ ‘ ‘
Orig Code: 0x2716 0x104: 17 90 STA @0x90

C/C++

* Most embedded software is writtenin C
e Cis supported by most compilersand

* Manyembedded librariesand
frameworks exist in only C

e STM32 allows for both programming
language

* For many programs, C is sufficient

Why Don't We

Use Arduino
Framework?

Although convenient to use, it does not scale well for
large programs

Targeted towards hobbist

Poorly managed dependencies

Too much abstraction, difficult to optimize and
understand what is happening

Over-simplistic development environment, lacks
many modern day debug tools

Without the Arduino
Framework, do | need to
code everything from

scratch?

No, STM32 provides some code
that abstracts the low-level
register setting

STM32
Hardware

Abstraction
Layer (HAL)

The HAL abstracts most of
the register writing

It provide basic functions to
get the peripheral to work

All functions are well
documented by STM

STM32 Hello
world —
Blinky LED

2.

4.

Create New Project
Find the LED pinout

HAL function for turning on the LED

HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3,
GPIO_PIN_SET);

Compile and upload to the microcontroller!

PulTY

"Hello World"

STM32 Hello world — UART

e UART (universal asynchronous receiver transmitter)
* AKA Serial communication

e Commonly used to communicate between the
microcontroller and a computer using a UART to
USB converter

e The STM32 Nucleo board has the UART to USB
converter built in

* We will be using it to send a message to Putty or
any serial terminal on your computer

Programming
UART

1.
2.
3.

Configure UART peripheral on the STM32
HAL function for UART transmission

Read UART message in Putty

Reading the temperature sensor

A The temperature sensor outputs an analog signal (voltage)

L To read it we must use the STM32's Analog to Digital Converter
= (ADC)

g The readings from the ADC can then be converted into a
temperature unit that we understand

What does the ADC do

* Analog to Digital Converter

Converts analog voltage to a digital signal in binary
Allows the microcontroller to read voltage

>
» 00111101
>

* Many simple sensors use this method of
communication

* The accuracy of the data will depend on the
microcontroller's ADC resolution

e STM32L432 has 12-bit resolution

1. Configure the ADC settings in the IDE

: 2. Read ADC conversion using the HAL
P rog rammi ng « HAL ADC_Start(&hadcl);
ADC « HAL_ADC_PollForConversion(&hadcl,

HAL_MAX_DELAY);
* HAL_ADC_GetValue(&hadcl);

Accelerometer

The accelerometer uses 12C to communicate

It can output acceleration in the X)Y, and Z axis

More complex sensor as we can write and read to the
device

What is 12C

e [2Cis a protocol used by
many sensors and devices to
talk to a microcontroller

e |2Ccan enable one
microcontroller to talk to
multiple devices

* Master-Slave(s) relation
between the microcontroller
and sensors

* Only requires 2 wires for
communications

|12C- Hardware

Master_0L 5lave_0O¢ 5lave_03

Wi 1]

T |
A

OxkA&

e 2 wires are required for 12C
communications

e SCL (Serial Clock) is used to

synchronize communications

e SDA (Serial Data) is used to
transmit data between the
devices

* Only one device can talk at a ;
tlme (half-duplex) Slave_ 01 Master_0O2

e Each device has an address,
this is physically assigned,
cannot be changed by software

Message

Read/ | ACK/ ACK/ ACK/
START 7 or 10 Bits Write | NACK| 8 Bits NACK| 8 Bits |NACK|STOP
- Bit Bit Bit Bit A
/ — Address Frame — -Data Frame 1- -Data Frame 1- \
Start Condition Stop Condition

MCU will need to send the device address that it wants to talk to
|2C - SOftwa re . MCU needs to specify if it wants to read or write

Slave device will acknowledge it received the message

MCU can transmit any data

Slave will acknowledge after every byte

|12C — Sensor's Datasheet

2.4.2 I?C - inter-IC control interface
Subject to general operating conditions for Vdd and Top.

Table 7. I*C slave timing values

I2C standard mode I2C fast mode
Parameter _ _

fiscLy | SCL clock frequency 0 100 0 400 kHz
twscLL) | SCL clock low time 4.7 1.3 us
twscLH) SCL clock high time 4.0 0.6
tsuspa) | SDA setup time 250 100 ns
thispa) SDA data hold time 0.01 3.45 0.01 0.9 Vi

thisT) START condition hold time 4 0.6

tsuisr) Repeated START condition setup time 4.7 0.6

tsuispy STOP condition setup time -+ 0.6 -

twisp:sr) Bus free time between STOP and START condition 4.7 1.3

WHO AM | &

8.3 WHO_AM_| (OFh)

Who_AM_I register (r). This register is a read-only register. Its value is fixed at 44h.

Table 26. WHO_AM_I register default values

0 1 0 0 0 1 0 0
eee00 |2C Bus 11:19 AM 69% WM
We will be reading this register { Messages LIS2DWA2 (0x18) Details

to make sure our 12C and _
. . New phone who dis
accelerometer is working.

Accelerometer (0x44)

1. Configure the I12C settings in the IDE

P rog ramm | ng 2. Write and Read from the sensor using 12C

 HAL_I2C_Master_Transmit(handle, address, data,

| 2 C data length, timeout delay);
 HAL_I2C_Master_Receive(handle,address, data, data
length, timeout delay);

Reading Acceleration

8.12

8.13

OUT_X_L (28h)

X-axis LSB output register (r).

Table 47. OUT_X_L register
X_L7 X_L6 X_L5 X_L4 X_L3 X_L2(0 0

1. If Low-Power Mode 1 is enabled, this bit is set to 0.

The 8 least significant bits of linear acceleration sensor X-axis output. Together with the OUT_X_H (29h) register,
it forms the output value expressed as a 16-bit word in 2's complement.

OUT_X_H (29h)

X-axis MSB output register (r).

Table 48. OUT_X_H register

X_H7 X_H6 X_H5 X_H4 X_H3 X_H2 X_H1 X_HO

The 8 most significant bits of linear acceleration sensor X-axis output. Together with the OUT_X_L (28h) register,
it forms the output value expressed as a 16-bit word in 2's complement.

Challenge — Tap Detection

Configure the Read the register
correct config containing tap
registers events

Determine if tap
occurred

