
IEEE Microchips and 
Dip

Workshop 2 – Introduction to 
Embedded Software



Workshop 1 
Recap

• We built a consisting of a microcontroller, 
an analog temperature sensor, and an I2C 
accelerometer

• We created an electrical schematic

• The system requirements follow:

• The system must get temperature once 
a second

• The system must get acceleration every 
100 ms

• The system must display these data for 
the user to view



What are we doing 
this workshop?
• Introduction to embedded software 

development

• Programming the STM32 to

• Blink an LED

• Say "Hello World"

• Read the temperature sensor

• Read the accelerometer

• Take over the world



Developing on 
an Embedded
Device vs a 
Desktop

No built-in screen to debug programs

No file system

Limited memory

No floating point processor



Embedded
Development 
Tools

• Breakpoints

• Memory viewer

• Serial to USB converters

• LEDs



C/C++

• Most embedded software is written in C

• C is supported by most compilers and

• Many embedded libraries and 
frameworks exist in only C

• STM32 allows for both programming 
language

• For many programs, C is sufficient



Why Don't We
Use Arduino 
Framework?

Although convenient to use, it does not scale well for 
large programs

Targeted towards hobbist

Poorly managed dependencies

Too much abstraction, difficult to optimize and 
understand what is happening

Over-simplistic development environment, lacks 
many modern day debug tools



Without the Arduino 
Framework, do I need to 

code everything from 
scratch?

No, STM32 provides some code 
that abstracts the low-level 

register setting



STM32
Hardware 
Abstraction 
Layer (HAL)

The HAL abstracts most of 
the register writing

It provide basic functions to 
get the peripheral to work

All functions are well 
documented by STM



STM32 Hello 
world –

Blinky LED

1. Create New Project

2. Find the LED pinout

3. HAL function for turning on the LED
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, 
GPIO_PIN_SET);

4. Compile and upload to the microcontroller!



STM32 Hello world – UART

• UART (universal asynchronous receiver transmitter)

• AKA Serial communication

• Commonly used to communicate between the 
microcontroller and a computer using a UART to 
USB converter

• The STM32 Nucleo board has the UART to USB 
converter built in

• We will be using it to send a message to Putty or 
any serial terminal on your computer

"Hello World"



Programming 
UART

1. Configure UART peripheral on the STM32

2. HAL function for UART transmission

3. Read UART message in Putty



Reading the temperature sensor

The temperature sensor outputs an analog signal (voltage)

To read it we must use the STM32's Analog to Digital Converter 
(ADC)

The readings from the ADC can then be converted into a 
temperature unit that we understand



What does the ADC do

• Analog to Digital Converter

• Converts analog voltage to a digital signal in binary

• Allows the microcontroller to read voltage

• Many simple sensors use this method of 
communication

• The accuracy of the data will depend on the 
microcontroller's ADC resolution

• STM32L432 has 12-bit resolution



Programming 
ADC

1. Configure the ADC settings in the IDE

2. Read ADC conversion using the HAL

• HAL_ADC_Start(&hadc1);

• HAL_ADC_PollForConversion(&hadc1, 
HAL_MAX_DELAY);

• HAL_ADC_GetValue(&hadc1);



Accelerometer

The accelerometer uses I2C to communicate

It can output acceleration in the X,Y, and Z axis

More complex sensor as we can write and read to the 
device



What is I2C

• I2C is a protocol used by 
many sensors and devices to 
talk to a microcontroller

• I2C can enable one 
microcontroller to talk to 
multiple devices

• Master-Slave(s) relation 
between the microcontroller 
and sensors

• Only requires 2 wires for 
communications



I2C- Hardware

• 2 wires are required for I2C 
communications

• SCL (Serial Clock) is used to 
synchronize communications

• SDA (Serial Data) is used to 
transmit data between the 
devices

• Only one device can talk at a 
time (half-duplex)

• Each device has an address, 
this is physically assigned, 
cannot be changed by software



I2C - Software
• MCU will need to send the device address that it wants to talk to

• MCU needs to specify if it wants to read or write

• Slave device will acknowledge it received the message

• MCU can transmit any data

• Slave will acknowledge after every byte



I2C – Sensor's Datasheet



WHO AM I

We will be reading this register 
to make sure our I2C and 
accelerometer is working.



Programming 
I2C

1. Configure the I2C settings in the IDE

2. Write and Read from the sensor using I2C
• HAL_I2C_Master_Transmit(handle, address, data, 

data length, timeout delay);

• HAL_I2C_Master_Receive(handle, address, data, data 
length, timeout delay);



Reading Acceleration



Challenge – Tap Detection

Configure the 
correct config 
registers

1

Read the register 
containing tap 
events

2

Determine if tap 
occurred

3


